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Abstract
In this paper, a new method is developed to investigate the pore structure of
finitely and even infinitely ramified Sierpinski carpets. The holes in every
iteration stage of the carpet are described by a hole-counting polynomial.
This polynomial can be computed iteratively for all carpet stages and contains
information about the distribution of holes with different areas and perimeters,
from which dimensions governing the scaling of these quantities can be
determined. Whereas the hole area is known to be two dimensional, the
dimension of the hole perimeter may be related to the random walk dimension.

PACS numbers: 05.45.Df, 61.43.Hv, 61.43.Gt, 81.05.Rm, 05.40.Fb

1. Introduction

Porous materials, such as aerogels, sedimentary rocks, bio-membranes, corals and sponges,
form a large class of real fractals around us. The pore structure plays an important role in
determining many properties of such materials. The pore structure is extremely complicated,
and identifying features which can be associated with any property is a major problem. The
simplest quantity is porosity, which is the fraction of pore volume, compared to the total
sample volume. However, the only information on porosity is inadequate to understand, for
example, transport properties of a porous material. In the present paper we investigate further
details of the pore structure of a deterministic fractal and show that the interface area of the
pores is another important characteristic, which can be used to give an approximate estimate
of dynamic properties such as diffusion.

An ideal fractal, of course, cannot have a definite porosity because the porosity in this
case would tend to 1 or 0 as we explain later. We are concerned here with real systems, which
have a macroscopic density or porosity on a large scale (∼mm), but on an intermediate scale
(∼µm) are fractal, whereas at a small length scale (∼Å) become homogeneous again.

Porous systems are often modelled by fractal structures, like the Sierpinski gasket or
carpets, or the Menger sponge [1, 2]. First, we must clarify which component of the system
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is fractal—the solid material or the pore space. Obviously, if one is fractal the other must
be compact. Experiments such as x-ray and neutron scattering, or adsorption of gases with
different sized molecules, reveal the fractal nature of a real system [1]. Scattering experiments
clearly show whether the system is mass-fractal or surface-fractal. The probe (neutron or x-ray
photon) sees only the solid material; so the information obtained refers to the solid phase.

For porous rocks, the interface is found to be fractal, so the pore space is fractal, whereas
for aerogels, the solid material is fractal. It is possible to model both types of porous media
by the same deterministic fractal model by assigning the fractal component to the solid phase
in one case and to the pore space in the other. This has been done in [3, 4] for aerogels and
sedimentary rocks. We illustrate this in further detail in the next section.

The object of modelling a porous system in such a manner is usually to study some
property which depends on the porosity—this may be a transport property, such as diffusivity,
electrical or thermal conductivity. It may also be a property dependent on the area of the
interface between pore and solid—such as the efficiency of a catalyst or adsorber of a gas or
liquid. For these properties the volume of a pore as well as its interface area are very important
quantities. Thus, efficient methods to determine pore volumes and surfaces are needed.

This work demonstrates a method for calculating the pore volume and interface area for
Sierpinski carpets in two dimensions at any specified stage of iteration. The results can be
applied to calculate properties which depend on these properties. We also use this method to
show that the size distribution of pore volumes follows a power law with an exponent df /2
(as it should) and the interface also follows a power law distribution with a new exponent
characteristic of the fractal structure.

2. Sierpinski carpets and porosity

Sierpinski carpets are special kinds of self-similar fractals in the plane. They are constructed
in the following way: start with a unit square, divide it into n × n congruent smaller subsquares
and remove (n2 − m) of them, corresponding to a given n × n pattern called the generator
of the Sierpinski carpet. Repeat this construction step with all the remaining subsquares ad
infinitum. The resulting object is a fractal of dimension df = log(m)/ log(n) [5], called a
Sierpinski carpet. Further on, we restrict our considerations to connected carpet patterns, i.e.
the dark squares of the generator have to be connected by a common edge. An example of such
a Sierpinski carpet generator and the second and third iterations of the construction procedure
is shown in figure 1.

Sierpinski carpets can be finitely or infinitely ramified. In a finitely ramified fractal, any
part can be separated from the rest by cutting a finite number of connections. This property
can also be checked in the generator as described later.

In order to use Sierpinski carpets as models for porous media, let us consider the white
squares as phase 1 and the dark squares as phase 2. If phase 1 is the pore space and phase 2 is the
solid phase, then on iteration the pore space goes on increasing and the solid phase decreasing.
In this case the solid phase is the fractal. Thus, porosity increases during the iteration: for the
example carpet shown in figure 1 the porosity of the generator is P1 = 1−11/16 = 5/16. In the
second stage it is P2 = 1− (11/16)2. So at the ith stage the porosity will be Pi = 1− (11/16)i

and Pi → 1 for i → ∞.
The real material has some definite macroscopic porosity Pmac. So one can choose a

suitable fractal generator and iterate it up to the required stage i so as to get the right porosity
Pmac. The overall picture of the material is, therefore, as if a fractal unit iterated up to stage
i (the ith stage ‘iterator’ as it is termed in [6]) is repeated periodically to give a structure
homogeneous at length scales �1 [7]. Furthermore, since the smallest building blocks of the



The pore structure of Sierpinski carpets 8753

(a)

(c)

(b)

Figure 1. An example of a Sierpinski carpet generator (a) with n = 4 and m = 11 and the results
of the second (b) and third (c) iterations of the construction procedure. Squares corresponding to
white squares in the generator are removed.

ith stage iterator are small dark and white squares, there is also no fractality for length scales
less than the size of these small squares.

In a complementary case, where the pore is fractal, rather than the solid, one must identify
the solid with phase 1 and the pore space as phase 2. In this case the porosity for the example
carpet of figure 1 would be Pi = (11/16)i, so that Pi → 0 as i → ∞.

In modelling a real structure, a three-dimensional model would be more appropriate,
but these ideas can easily be extended to three dimensions. In many cases, however, a two-
dimensional section of the rock is studied as this is much simpler. In this case, the relative pore
area intercepted by the section is termed as the ‘aerosity’. It is related to three-dimensional
porosity and equals it in special cases [8].

3. Describing holes by vectors

Further on, we consider phase 1 as the pore space and phase 2, i.e. the dark squares,
as the solid phase. Therefore, a hole in a Sierpinski carpet pattern is a cluster of white
squares. We consider the white squares as being connected and thus belonging to the same
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cluster if they have at least one vertex in common (they do not necessarily coincide at one
edge). Note that this kind of connectivity is different from that defined for the dark squares
in section 2.

An important quantity characterizing such a hole is the area, i.e. the number of white
squares forming a cluster. These white squares have a size of n−2i in the ith carpet stage.
Counting the number of such squares corresponds to measuring the hole area in multiples of
n−2i. Furthermore, the size of the surface of a hole is important. Surface edges of a hole are
all those bonds separating the hole cluster from the surrounding dark squares. They are of
length n−i in the ith carpet stage. Thus, counting the number of surface edges corresponds to
measuring the surface in multiples of n−i. Surface edges can be horizontal or vertical. Thus,
we describe holes by a triple of integers

l
¯
=
 area
number of horizontal surface edges

number of vertical surface edges


further on called a hole vector. The area of a hole may also be zero, if the generator contains
a pattern of four dark squares building up a square of twice the linear size. The corresponding
hole vector is then (0, 0, 0). All vectors considered here are column vectors, and also where
denoted as row vectors (i.e. we skip the transposed sign in these cases).

To all the holes in the generator we assign a hole vector l
¯

i (i = 1, . . . , nl), where nl

denotes the number of holes. The only hole in the generator, shown in figure 1 for instance, is
characterized by the hole vector l

¯1 = (1, 2, 2).
By a hole vector, not only holes, but also empty parts of the generator situated at the

borders, which can combine to build a hole during the iteration, can be described. To achieve
this we have to discuss the ramification of the fractal again.

Let us call the dark subsquares in which the first and last rows of the generator coincide and
the dark subsquares in which the first and last columns of the generator coincide, connecting
subsquares. With these squares a small copy of the generator contained in a higher iteration
may be connected to neighbouring small copies of the generator. The connecting sites are
marked with arrows in figure 2. Let rh denote the number of connecting subsquares in the first
(or last) row and rv be the number of connecting subsquares in the first (or last) column of
the generator. We call these numbers the horizontal and vertical ramification. Obviously, a
Sierpinski carpet with rh > 1 or rv > 1 is infinitely ramified. For the example carpets shown
in figure 2 one finds (a) rh = 3 and rv = 3, and (b) rh = 2 and rv = 1. Hence both carpets are
infinitely ramified.

To every border part between two arrows a hole vector is assigned. The hole vectors for
the corners are denoted with c

¯1, c
¯2, c

¯3 and c
¯4, as shown in figure 2. For instance, the corner

hole vector c
¯1 describes the number of white squares which are located between the leftmost

↓ and the uppermost → on the boundary of the generator and the horizontal and vertical edges
between these two arrows (where the edges which the arrows refer to are not counted). For
the generators in figure 2 we find c

¯1 = (0, 0, 0) and c
¯1 = (0, 0, 2); for example (a) and (b),

respectively. Note that the vertical edges are marked with a thicker line in the latter case.
These edges contribute to a potential hole as illustrated by the neighbouring generators in light
grey.

If the Sierpinski carpet is infinitely ramified in the horizontal direction, then from left
to right we have hole vectors h

¯ iu on the upper border (every one of these vectors describing
the empty part of the generator between two successive ↓) and analogously h

¯ id on the down
border (i = 1, . . . , nh = rh − 1). For the example carpet in figure 2(a) this definition yields
h
¯ 1u = h

¯ 1d = h
¯ 2u = h

¯ 2d = (0, 0, 0) as the arrows are directly neighboured. On the other hand,
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(a)

(b)

Figure 2. For (a) an easy and (b) our example generator (see figure 1) the connecting squares
(denoted by arrows) and the border hole vectors (c

¯ i , h¯ iu, h
¯ id , v

¯ il , v¯ ir ) are indicated. To clarify
their contribution to the potential holes the corresponding edges and areas are highlighted and the
neighbouring patterns are depicted in light grey. In addition, the horizontal (−−) and vertical (· · ·)
edges between neighbouring dark sites are marked.

we find h
¯ 1u = (0, 1, 0) and h

¯ 1d = (1, 1, 2) for the example generator shown in figures 1 and
2(b).

The hole vectors hiu and hid will be combined with h
¯ i = h

¯ iu + h
¯ id (i = 1, . . . , nh)

describing the potential horizontal holes.
Analogously from top to bottom we get hole vectors v

¯ il on the left border and v
¯ ir on the

right border and thus v
¯ i = v

¯ il + v
¯ ir (i = 1, . . . , nv = rv − 1) describing the potential vertical

holes, if the fractal is infinitely ramified in the vertical direction. Combining these vectors
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(b)(a)

h h

h
h

v
v

v

c

c
c

Figure 3. The hole of the example carpet generator (figure 1) is enlarged from the first to the second
iteration, not only by decreasing the length scale, but also by the potential horizontal, vertical and
corner holes.

we get

c
¯

=
4∑

i=1
c
¯ i potential corner hole

h
¯

= c
¯

+
nh∑
i=1

h
¯ i sum of potential horizontal holes and corner hole

v
¯

= c
¯

+
nv∑
i=1

v
¯ i sum of potential vertical holes and corner hole.

With these definitions we find c
¯1 = c

¯2 = c
¯3 = c

¯4 = (0, 0, 0) and also nh = nv = 2
with h

¯ 1 =h
¯ 2 = v

¯1 = v
¯2 = (0, 0, 0) for the example carpet (a) in figure 2. This yields

c
¯
=h

¯
= v

¯
= (0, 0, 0) for this easy example.

For the other example carpet shown in figures 1 and 2(b), we have in the horizontal
direction nh = 1 with h

¯ 1 = (1, 2, 2) and in the vertical direction nv = 0. The corners are
described by c

¯1 = (0, 0, 2), c
¯2 = (2, 1, 2), c

¯3 = (0, 0, 1), c
¯4 = (1, 1, 1) and thus c

¯
= (3, 2, 6).

This results in h
¯

= (4, 4, 8) and v
¯

= (3, 2, 6).

4. Hole vectors under iteration

Now let us look at how a hole vector l
¯

= (l1, l2, l3) behaves under iteration. First of all, the
area is multiplied by n2, since an empty part of the unit square remains empty in the next
iteration, but now we measure the area in multiples of squares contracted by a factor n. If
we look, for instance, at the hole in our example generator (see figure 3(a)), these smaller
squares are marked with × in figure 3(b). Then an additional area is added on the borders:
for every pair of horizontal edges we have to add the area of the potential horizontal holes
and corner holes, i.e. h1, and for every pair of vertical edges we have to add the area of the
potential vertical holes and corner holes, i.e. v1. Furthermore, some additional area occurs at
the corners: this is exactly the area of the corner hole c1. In figure 3(b), the corresponding
small squares are marked with h, v and c, respectively. Thus, we get

l1 → n2l1 + 1
2 l2h1 + 1

2 l3v1 + c1 (1)

for the area of the hole in the next iteration step.
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Every edge is replaced by a set of smaller edges. For every pair of horizontal edges we
get h2 smaller horizontal and h3 smaller vertical edges in the next iteration step surrounding
the squares marked with h in figure 3(b). If such a surrounding edge is between a square
marked with h and a square marked with ×, then this edge is, of course, not a border of the
hole, but a corresponding border edge occurs on the opposite side of the hole between a square
marked with × and a dark square. Additionally, 2rh horizontal edges appear between dark
squares and squares marked with × connecting the other parts of the border. These edges
correspond to the arrows in figure 2. Analogously, for every pair of vertical edges we get v2

smaller horizontal and v3 smaller vertical edges surrounding the squares marked with v and
additionally 2rv vertical edges. The corner parts contribute c2 horizontal and c3 vertical edges
surrounding the squares marked with c. Thus we get

l2 → 1
2 l2(2rh + h2) + 1

2 l3v2 + c2
(2)

l3 → 1
2 l2h3 + 1

2 l3(2rv + v3) + c3.

Combining (1) and (2) we define a function f
¯

describing how a hole vector evolves under the
iteration:

f
¯
( l
¯
) = M

¯̄
· l
¯

+ c
¯

with M
¯̄

=
n2 h1

2
v1
2

0 rh + h2
2

v2
2

0 h3
2 rv + v3

2

 .

When iterating this equation we get

f
¯

i ( l
¯
) = M

¯̄
i · l

¯
+

 i−1∑
j=0

M
¯̄

j

 · c
¯

with

M
¯̄

j =



λ
j

0
λ

j

0(h3v1 + h1(2λ0−2rv − v3))

4(λ0 − λ1)(λ0 − λ2)

λ
j

0(h1v2 + v1(2λ0 − 2rh −h2))

4(λ0 − λ1)(λ0 − λ2)

+ λ
j

1(h3v1 + h1(2λ1 − 2rv − v3))

4(λ1 − λ2)(λ1 − λ0)
+ λ

j

1(h1v2 + v1(2λ1 − 2rh −h2))

4(λ1 − λ2)(λ1 − λ0)

+ λ
j

2(h3v1 + h1(2λ2 − 2rv − v3))

4(λ2 − λ0)(λ2 − λ1)
+ λ

j

2(h1v2 + v1(2λ2 − 2rh −h2))

4(λ2 − λ0)(λ2 − λ1)

0 λ
j

1(2λ1 − 2rv−v3)− λ
j

2(2λ2 − 2rv − v3)

2(λ1 − λ2)

v2

(
λ

j

1 − λ
j

2

)
2(λ1 − λ2)

0
h3

(
λ

j

1 − λ
j

2

)
2(λ1 − λ2)

λ
j

1(2λ1 − 2rh −h2) − λ
j

2(2λ2 − 2rh −h2)

2(λ1 − λ2)


where

λ0 = n2

λ1 = h2 + 2rh + 2rv + v3 +
√

(h2 + 2rh + 2rv + v3)2 − 4(−h3v2 + (2rh + h2)(2rv + v3))

4

λ2 = h2 + 2rh + 2rv + v3 −
√

(h2 + 2rh + 2rv + v3)2 − 4(−h3v2 + (2rh + h2)(2rv + v3))

4

are the eigenvalues of M
¯̄

. For our example carpet (figure 1) the matrix M
¯̄

has the special form

M
¯̄

=
16 2 1.5

0 4 1
0 4 4
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with the eigenvalues λ0 = 16, λ1 = 6 and λ2 = 2; hence we get

M
¯̄

j =


16j 3 16j

14 − 6j

4 + 2j

28
16j

7 − 6j

8 − 2j

56

0 6j

2 + 2j

2
6j

4 − 2j

4

0 6j − 2j 6j

2 + 2j

2

 .

Note that the eigenvalue λ1 can be used to calculate the scaling exponent dp of the hole
perimeter as we will discuss in section 7.

5. Hole-counting polynomial

To every iteration stage of the Sierpinski carpet we assign a hole-counting polynomial. This
is a polynomial in three variables x, y and z. Every hole, described by a hole vector l

¯
, is

characterized by a monomial xl1 yl2 zl3 . The hole-counting polynomial pi for the ith iteration
of the Sierpinski carpet is then the sum of the monomials for all the holes in the ith stage.

Now we want to derive a recursive formula for the hole-counting polynomial of
successive iterations of the Sierpinski carpet. Of course, the stage (i + 1) contains all the
holes of the ith stage m times, thus pi+1 contains mpi. Additionally, new holes appear
by combining empty parts at the border of the ith iteration. There are different kinds of
these new holes: first, every hole in the generator gives a larger new hole, whose hole
vector can be derived by applying i times the function f

¯
to the original hole vector.

Thus pi+1 contains
∑nl

k=1 xf i
1 (l

¯
k)yf i

2 (l
¯
k)zf i

3 (l
¯
k). Second, potential horizontal holes appear

as holes on the sh edges where ith stage carpets meet. These edges are denoted by
dashed (−−) lines for the example generators in figure 2. There we find sh = 4 and
sh = 6 for examples (a) and (b), respectively. Each one of the nh potential horizontal holes
appears (i−1) times iterated, hence sh

∑nh

k=1 xf i−1
1 (h

¯
k)yf i−1

2 (h
¯

k)zf i−1
3 (h

¯
k) is contained in pi+1. But

in addition to these largest iterated potential horizontal holes, all smaller iterations appear and
the number increases by a factor rh with decreasing iteration. Thus, all new horizontal holes
are described by the term sh

∑nh

k=1

∑i−1
j=0 r

i−j−1
h xf

j

1 (h
¯

k)yf
j

2 (h
¯

k)zf
j

3 (h
¯

k). Third, an analogous term

appears describing the new vertical holes: sv

∑nv

k=1

∑i−1
j=0 r

i−j−1
v xf

j

1 (v
¯

k )yf
j

2 (v
¯

k )zf
j

3 (v
¯

k), where
sv is the number of vertical edges between neighbouring dark sites denoted by dotted (· · ·)
lines in figure 2.

So iteratively we can get the hole-counting polynomial by

pi+1(x, y, z) = m · pi(x, y, z) +
nl∑

k=1

xf i
1 (l

¯
k)yf i

2 (l
¯

k)zf i
3 (l

¯
k)

+ sh

nh∑
k=1

i−1∑
j=0

r
i−j−1
h xf

j

1 (h
¯

k)yf
j

2 (h
¯

k)zf
j

3 (h
¯

k) (3)

+ sv

nv∑
k=1

i−1∑
j=0

ri−j−1
v xf

j

1 (v
¯

k)yf
j

2 (v
¯

k)zf
j

3 (v
¯

k).

Obviously, the polynomial p1 describing the generator has the form

p1(x, y, z) =
nl∑

k=1

x l
¯
k y l

¯
k zl

¯
k .

We also get this polynomial by applying the iteration formula (3) starting with p0(x, y, z) = 0.
So the starting point of the iteration formula can be given in the simple form p0 = 0.
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For the example carpet shown in figure 1, the recursive formula for the hole-counting
polynomials is

pi+1(x, y, z) = 11pi(x, y, z) + xf i
1 ((1,2,2))yf i

2 ((1,2,2))zf i
3 ((1,2,2))

+ 6
i−1∑
j=0

2i−j−1xf
j

1 ((1,2,2))yf
j

2 ((1,2,2))zf
j

3 ((1,2,2)).

The first iterations for this example give

p0 = 0

p1 = x1y2z2

p2 = 11x1y2z2 + x26y12z22 + 6x1y2z2

= 17x1y2z2 + x26y12z22

p3 = 187x1y2z2 + 11x26y12z22 + x476y72z142 + 6 · 2x1y2z2 + 6x26y12z22

= 199x1y2z2 + 17x26y12z22 + x476y72z142

...

This especially means that the generator contains one hole of size 1 with two horizontal and
two vertical border edges and the second iteration of this carpet contains 17 such small holes
and additionally one hole of size 26 with 12 horizontal and 22 vertical edges, as can easily be
checked in figure 1.

6. Special case: finitely ramified carpets

As explained in section 3, finitely ramified Sierpinski carpets are characterized by rh = 1 and
rv = 1. Furthermore, there are no potential horizontal and vertical holes, i.e. h

¯
= v

¯
= c

¯
.

Since there is no difference between the vectors h
¯

and v
¯
, it is not important to distinguish

between horizontal and vertical edges any more. Thus we can reduce the hole vectors to
two-dimensional vectors

l̃
¯

=
(

area
number of surface edges

)
.

Specifically, we get a two-dimensional vector c̃
¯

describing the potential corner hole.

The function f̃
¯

describing how a hole vector evolves under the iteration then has the
special form

f̃
¯
( l̃
¯
) = M̃

¯̄
· l̃

¯
+ c̃

¯
with M̃

¯̄
=
(

n2 c̃1
2

0 1 + c̃2
2

)
.

Since the number of potential horizontal and vertical holes is zero, the iteration formula for
the hole-counting polynomials has the simple form

p̃i+1(x, y) = mp̃i(x, y) +
nl∑

k=1

xf̃
i

1( l̃
¯

k)yf̃
i

2( l̃
¯

k) (4)

again starting with p̃0 = 0, where the exponent for y is the whole number of edges.

Now let us consider the iteration f̃
¯

i
in more detail. As in the general case we have

f̃
¯

i
( l̃
¯
) = M̃

¯̄
i · l̃

¯
+

 i−1∑
j=0

M̃
¯̄

j

 · c̃
¯
.
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This equation can be simplified using the relations
(∑i−1

j=0 M̃
¯̄

j
)

· c̃
¯

= f̃ i−1( c̃
¯
) and

f̃
i−1
2 (c̃

¯
) = c̃2

∑i−1
j=0

(
1 + c̃2

2

)j = 2
(
1 + c̃2

2

)i − 2. This results in

f̃
¯

i
( l̃
¯
) =

(
n2i 1

2 f̃ i−1
1 (c̃

¯
)

0
(
1 + c̃2

2

)i
)

l̃
¯

+

(
f̃ i−1

1 (c̃
¯
)

2
(
1 + c̃2

2

)i − 2

)
. (5)

Hence the evolution of any hole under the iteration of f̃
¯

is fully described by the evolution of
the area of the potential corner hole.

Since there are no potential horizontal and vertical holes in a finitely ramified Sierpinski
carpet, the area of the (i − 1) times iterated potential corner hole can also be determined in
another way: this area is the whole area of the i times iterated carpet, n2i, minus the number
of dark sites, mi, minus the number of sites situated in any hole. The sum of the areas of all
the holes can simply be derived from the hole-counting polynomial p̃i : it is the sum over all
the x-exponents times the coefficients, i.e. ∂

∂x
p̃i (1, 1). Thus we get

f̃
i−1

1 (c̃
¯
) = n2i − mi − ∂

∂x
p̃i (1, 1). (6)

Inserting (5) and (6) in (4) gives the iteration formula of the hole-counting polynomial for
finitely ramified Sierpinski carpets in the following form:

p̃i+1(x, y) = mp̃i(x, y) +
nl∑

k=1

x
n2i l̃k1+

(
l̃k2
2 +1

)
(n2i−mi− ∂

∂x
p̃i (1,1))

y

(
1+ c̃2

2

)i

l̃k2+2
(

1+ c̃2
2

)
i−2

.

7. Dimensions extracted from the polynomial

The hole-counting polynomial can be used, for example, to find a suitable Sierpinski carpet in
a reasonable iteration depth to model porous media. If a low iteration depth is considered the
hole sizes and perimeters in the carpet and porous material can be compared directly. If one is
not interested in the number of holes of a certain size alone, the scaling properties of the hole
area and the perimeter with respect to the linear length of the fractal can also be analysed.

In an infinitely iterated Sierpinski carpet there are sequences of similar holes. The largest
hole of such a sequence corresponds to a hole in the generator where at the border some new
area is added during the iteration. Resulting from the self-similarity, such a hole occurs m
times scaled down by a factor 1/n, every one of these smaller holes again occurs m times
scaled down by a factor 1/n, and so on. Hence, in a log–log plot of the number of holes over
the linear size for every hole in the generator, we would get a straight line with slope

log(m)

log(1/n)
= − log(m)

log(n)
= −df .

For infinitely ramified carpets, in every iteration new hole sequences start resulting from the
potential horizontal and vertical holes. These sequences, of course, show the same behaviour
during the iteration. Since the size of the starting holes is the same in every iteration, these
different sequences cannot be distinguished in a log–log plot of the number of holes over the
linear size.

The exponents in the hole-counting polynomial describe the area and the perimeter (sum
of horizontal and vertical surface edges) of the holes. Let us first analyse the number of holes
of a certain area. Figure 5 shows a log–log plot of the number of holes over the hole area
for two different iterations of the Sierpinski carpet shown in figure 4. This carpet generator
(figure 4(a)) has holes and potential holes of different sizes. For a small iteration number,
the different hole sequences can be noted (figure 5(a)), whereas for large enough iterations
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(a)

(c)

(b)

Figure 4. An example of a Sierpinski carpet generator (a) with holes and potential holes with
different areas, which results in different holes in the second (b) and third (c) iterations.
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Figure 5. Log–log plot of the number of holes over the hole area for iterations 10 (a) and 50 (b).

the data points are nearly on a straight line (figure 5(b)). Thus for high iterations a straight
line can be fitted through the data points. The slope of this line is −df /2. As explained above,
resulting from the self-similarity every hole occurs m times scaled down by a factor 1/n. Since
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Figure 6. Log–log plot of the number of holes over the hole perimeter for iterations 10 (a) and
50 (b) for the carpet shown in figure 4.

the horizontal axis in figure 5 is the area of the hole, this quantity scales down by a factor 1/n2.
Thus a slope of

log(m)

log(1/n2)
= − log(m)

2 log(n)
= −df

2
(7)

follows. The exponent 2 in the denominator of the first term of (7) indicates that the hole area
is two dimensional. Hence the quantity da = −df /slope = 2 gives the dimension of the hole
area. For our example carpet the linear fit for iteration 100 gives the estimate da = 2.000 92
for the dimension of the hole area.

Now the question arises: what slope will a log–log plot of the number of holes over the
perimeter give? This number results in an estimate dp = −df/slope of the dimension of the
hole perimeter. The lower limit for dp is 1 and the upper limit is df , because the hole perimeter
is a subset of the whole Sierpinski carpet. This situation can be compared to the discussion on
holes in a percolation cluster [9] where the hole perimeter is the ‘lake front’ and the external
boundary is the ‘ocean front’ on a fractal island. It must be emphasized that dp here is the
scaling exponent for the perimeter of a single hole, not the sum of the perimeters for all the
holes, which must, of course, scale as df .

Figure 6 shows a log–log plot of the number of holes over the hole perimeter for two
different iterations of the Sierpinski carpet shown in figure 4. As for the hole area (see figure 5),
for small iteration numbers different hole sequences can be noted, whereas for large iterations
all data points are nearly on a straight line. The absolute value of the slope of this line is
larger compared with figure 5. From figure 6(b) the dimension of the hole perimeter can be
estimated as dp = 1.219 07. This is indeed a number between 1 and 2.

The perimeter dimension can also be calculated directly from the matrix M
¯̄

discussed in
section 4. Consider the sub-matrix

M
¯̄

∗ =
(

M22 M23

M32 M33

)
=
(

rh + h2
2

v2
2

h3
2 rv + v3

2

)
which describes how the horizontal and vertical edges of the holes evolve under the iteration.
For high enough iterations the number of edges in the next iteration is determined simply by
multiplying the actual number with the largest eigenvalue of the matrix M

¯̄
∗, which is that

denoted by λ1 in section 4. Therefore, the exponent dp, which describes the scaling of both
types of edges with the linear length of the carpet, is given by dp = log(λ1)/log(n). For the
example carpet in figure 4 we find dp = log(4 +

√
2)/ log(4) = 1.218 38, which is in good

agreement with the result from the hole-counting polynomial.
Table 1 shows all possible 3 × 3 Sierpinski carpet generators with holes and three different

dimensions: the fractal dimension, the dimension of the hole perimeter calculated from the
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Table 1. For all possible 3 × 3 Sierpinski carpet generators with holes the fractal dimension df,
the dimension dp of the hole perimeter and the random walk dimension dw are shown.

        

df 1.631 1.631 1.631 1.631 1.631 1.893 1.893 1.893

dp 1.465 1.562 1.465 1.562 1.465 1.262 1.000 1.000

dw 2.545 2.564 2.545 2.560 2.545 2.192 2.116 2.095
       

df 1.771 1.771 1.771 1.771 1.771 1.771 1.771

dp 1.352 1.352 1.631 1.562 1.465 1.000 1.000

dw 2.229 2.218 2.557 2.559 2.543 2.146 2.136

Table 2. For some infinitely ramified 7 × 7 Sierpinski carpet generators with holes, the dimensions
df, dp and dw are shown.

 

df 1.748 1.748 1.748 1.748 1.748 1.748 1.748 1.748 1.748

dp 1.318 1.377 1.183 1.443 1.226 1.381 1.392 1.507 1.456

dw 2.320 2.372 2.275 2.396 2.281 2.345 2.360 2.552 2.489

2
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Figure 7. For all the carpets shown in tables 1 and 2 the random walk dimension dw is plotted
over the dimension of the hole perimeter dp, together with the straight line dw = dp + 1. Identical
symbols correspond to carpets with the same fractal dimension: (×) df = 1.631, (+) df = 1.748,

(�) df = 1.771, (∗) df = 1.893.
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largest eigenvalue of M
¯̄

∗ and the random walk dimension. The random walk dimension is
determined by the resistance-scaling algorithm [10] for the finitely ramified carpets and by the
algorithm of [11] for 500 000 random walks of length 10 000 for the infinitely ramified ones.
In table 2 the same dimensions are given for the nine infinitely ramified 7 × 7 generators
considered in [11].

All considered generators in tables 1 and 2 that yield carpets with the same df and dp have
nearly the same random walk dimension. So there may be a dependence of dw on df and dp.
Therefore we plotted dw over dp for all the 3 × 3 and 7 × 7 carpets (figure 7). Our expectation
was that for carpets with the same df , the larger dp was the larger dw would be, because the
more compact a hole of a given area is, the less it hinders the random walk. This expectation
is approximately confirmed in figure 7. Apart from some fluctuations there is a monotonic
dependence of dw on dp; it even seems not to be influenced by df . The straight line in figure 7
is given by dw = dp + 1. Although this relationship is not exactly fulfilled, dp + 1 seems to be
a good approximation for dw.

8. Conclusions

In this paper we have derived a new method for investigating the pore structure of Sierpinski
carpets. The hole distribution for every iteration of the carpet can be described by a hole-
counting polynomial, and for this polynomial an iterative formula is given. This polynomial
contains all information about the holes in every stage and especially the dimension of the
hole area and the hole perimeter for the infinitely iterated carpet. Whereas the hole area is
known to be two dimensional, the dimension of the hole perimeter dp is a new dimension
characterizing the pore structure of the Sierpinski carpets, which to our knowledge has never
been investigated before.

Since a random walker on fractal lattices has to move around the holes, the dimension
of the hole perimeter should be related to the random walk dimension dw. For the example
carpets investigated in this paper, dw differs by at most 0.2 from dp + 1. This is important, since
an accurate approximation of dw for infinitely ramified Sierpinski carpets requires simulating
a huge number of long random walks, which is computationally very expensive, whereas dp

can be calculated analytically from the generator. There is as yet no exact relation connecting
the dynamic exponent dw with static exponents, such as df and dl (the chemical dimension), as
is available for loopless carpets with finite ramification [12]. It may seem surprising that the
approximate expression for dw does not involve df , but indirectly dp does contain information
about df , i.e. the number of white squares in the generator as well as their arrangement. It
also has the correct limits. The lower limit gives dw = 2, valid for normal diffusion, and the
upper limit is dw = 1 + df , which is true for loopless patterns with df = dl [12].

It is an interesting question whether the relation between dw and dp is confined to Sierpinski
carpets. Hence a subject of further research is the extension of the hole-counting polynomial
to a wider class of fractals such as, for instance, the invariant sets of more general iterated
function systems. Algorithms for computing dp analogous to those shown in this paper could
also be developed for this more general case.

Of course, the relation dw ≈ dp + 1 is just a rough approximation. The deviations from
the straight line in figure 7 are not only due to numerical inaccuracies of the dw values caused
by the finite length and number of the considered walks. For the finitely ramified Sierpinski
carpets we know dw up to an arbitrary accuracy by the resistance-scaling method. So if the
relation dw ≈ dp +1 was exactly fulfilled, the data points for the finitely ramified carpets should
at least lie on the straight line in figure 7 but obviously they do not. Hence finding an exact
dependence of the random walk dimension on df and dp, but maybe also on other dimensions
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such as the chemical dimension dl, is a topic of further research. The new exponent dp is
likely to be important for the study of rocks where the interface is sometimes found to scale
differently from the mass fractal dimension.

Details of various Sierpinski carpets have been studied by a transfer matrix method
[13, 14]. Here the carpet consists of ‘bonds’ and removal of a subsquare removes the bonds
bounding it. This results in different types of subsquares in the next stage with one or more
open sides. The open sides of the squares correspond to the pore–solid interface in our case.
So there are points of similarity in the two approaches. It would be interesting to see whether
the eigendimensions obtained by [13] are related to dp.
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